LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc.DEGREE EXAMINATION –**STATISTICS**

THIRD SEMESTER – APRIL 2019

16/17UST3MC02- ESTIMATION THOERY

PART - A

(10x2=20)

1. What is point estimation?

Answer ALL the questions:

- 2. Define unbiased estimator of a parametric function. Give an example.
- 3. What is Completeness of an estimator?
- 4. Define UMUVE.
- 5. Write any four methods for estimating a parameter.
- 6. State the Least squares Estimator of β_0 in the model $Y = \beta_0 + \beta_1 X + \epsilon$.
- 7. What is the role of prior distribution?
- 8. Give an unbiased estimator for θ in the case of $U(0, \pi)$ using a random sample.
- 9. Describe Confidence Intervals.
- 10. State the 95% confidence interval for μ based on a random sample of size n from N($\mu,$ 1).

PART – B

Answer any FIVE questions:

- 11. Let $x_1, x_2, ..., x_n$ be a random sample from a normal population N(μ ,1). Show that $T = \frac{1}{n} \sum_{i=1}^{n} x_i^2$ is an unbiased estimator of $\mu^2 + 1$.
- 12. Explain the *conce*pt of consistent estimator and also show that in sampling from a $N(\mu,\sigma^2)$ population, the sample mean is a consistent estimator of μ .
- 13. Write down the properties of sufficient statistic.
- 14. State and prove Neymann Fisher factorization theorem.
- 15. Explain the concept of the method of least square.
- 16. Describe the invariance property of MLE, what is the MLE of e^{θ} in the case of binomial b(1, ..., b) using a random sample.
- 17. Explain about the Bayes' estimator.
- 18. Given a random sample of size n from $N(\mu, \sigma^2), \mu \in \mathbb{R}$. Construct 100(1- α)% confidence interval for μ when σ^2 is known.

Answer any TWO questions

PART – C

- 19. a) State and prove Cramer Rao inequality.
b) Show that the family of Poisson distributions $\{P(\lambda), \lambda > 0\}$ is complete.(12)
(8)20. a) State and prove Rao Blackwell theorem.
b) If UMUVE exists, Show that UMUVE is unique.(10)
- 21. a) Show that maximum likelihood estimator is a function of sufficient statistic. (8) b) Obtain the moment estimators of the parameters of $U(\theta_1, \theta_2), \theta_1, \theta_2 \in \mathbb{R}$ (12)
- 22. a) Define prior and posterior distributions with suitable notations. Define Bayes Risk of an estimator and obtain two different expressions for it. (10)
 b)Obtain 100(1-α)% confidence limits for the difference of means in sampling from two normal

b)Obtain $100(1-\alpha)\%$ confidence limits for the difference of means in sampling from two normal populations. (10)

(5x8=40)

(2x20=40)

